MRI quantification of tumor heterogeneity for diagnosis and response assessment of bladder cancer

Huyen Thanh Nguyen, PhD
Wright Center of Innovation
Department of Radiology
The Ohio State University
Bladder Cancer Research

• Collaboration efforts between
 – Wright Center of Innovation in Biomedical Imaging
 – Urologists and Medical Oncologists at OSU

• Goals
 – To develop an advanced MRI protocol with data analytical tools to improve
 • Localization/detection
 • Tumor and node staging
 • Early assessment of neoadjuvant chemotherapeutic response
Morphologic MRI

Anatomical imaging: high soft tissue contrast and spatial resolution
Quantitative MRI

- **Dynamic contrast-enhanced MRI (DCE-MRI):**
 - To quantify microcirculation (micro-vascularity and permeability)

- **Diffusion-weighted MRI (DWI):**
 - To quantify water diffusion (micro-cellularity)

- **Amide proton transfer MRI (APT-MRI):**
 - To quantify the mobile protein level
Quantitative DCE-MRI

- Passage of a Gd-based contrast agent (CA) into tumor micro-vessels results in quantifiable signal enhancement.

60 dynamic scans
Single dose (0.1 mmol/kg body weight)
at 0.5 ml/s IV rate
Quantitative DCE-MRI

- Model-based pharmacokinetic parameters
 - Amp: amplitude of signal enhancement
 - k_{ep}: exchange rate of CA from the EES to plasma
DCE-MRI with k-means clustering

• To assess heterogeneity in microcirculation characteristics
 – Heterogeneous distribution of micro-vasculature (Amp) and permeability (k_{ep})

• To identify a biomarker for cancer diagnosis
k-means clustering of Amp and k_{ep}

- A tumor is segmented in 3 clusters

T2W-MRI

T1W DCE-MRI

Cluster 1: Low Amp, low k_{ep}

Cluster 2: High Amp, low k_{ep}

Cluster 3: Low Amp, high k_{ep}
Characterization of heterogeneity

T1W DCE-MRI

- Quantitative measurements:
 - Cluster 1 volume fraction (VF)
 - Cluster 2 VF
 - Cluster 3 VF
Results: response assessment

At mid-treatment point, responders and non-responders showed the opposite changes in microcirculation characteristics.

Responder

Non-responder

J. Magn Reson Imaging 2014, Nguyen et. al
Cluster VF as a classifier of response

- At mid-treatment point, all the changes in 3 cluster VFs were statistically significant (P ≤ 0.005)
- Cluster 2 VF was the best classifier
Results: tumor staging

- Tumor stages were found to be correlated with 3 cluster VFs

Stage T1

Stage T2

Stage T3

Stage T4
Summary

• DCE-MRI with k-means clustering
 – To characterize the heterogeneity of tumor microcirculation
 – Cluster VF can be used as a quantitative read-out
 – Potential biomarkers for response assessment and tumor staging
Future directions

- DCE-MRI with k-means clustering
 - Patient accrual to validate/identify a biomarker(s)
 - Apply the methodology to differentiate malignant from benign tissues

- Other applications
 - Data analysis tools: Histogram analysis
 - MRI futures: micro-cellularity (DWI), mobile protein levels (APT-MRI)
Acknowledgements

The Ohio State University

Department of Radiology
 Michael V. Knopp
 Zarine K. Shah
 Amir Abduljalil
 Xiangyu Yang
 Wenbo Wei
 Saba Elias

Department of Urology
 Kamal Pohar
 Robert R. Bahnson
 Ronney Abaza
 Ahmad Shabsigh

Department of Pathology
 Debra Zygner

Department of Internal Medicine
 Amir Mortazavi

Center for Biostatistics
 Lai Wei

Louisiana State University

Department of Physics and Astronomy
 Guang Jia

This study is supported by Wright Center of Innovation in Biomedical Imaging
and OSU Wexner Medical Center Imaging Signature Program